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1. Introduction

This note examines the variance of the random variables used in the Global Consciousness Project
(GCP), which was a long-term study of the behaviour of a worldwide network of random number
generators and its possible connection to the timing of events arousing widespread human interest.
In a 17-year series of more than 500 formal pre-specified statistical hypotheses for particular events
(1998-2015), an increase in correlations between the random number generators was observed, to a
degree that was extremely statistically significant, amounting cumulatively to more than 7 standard
deviations above chance expectation (Nelson, 1999-2020).

Technical  details  of  the  random number  generators  are  given  in  Bancel  (2016),  on  which  the
following description is based. Most of the random number generators used in the project were
either Mindsong or Orion devices. Both of these work on essentially the same principles, with a
random stream of bits (0s and 1s) initially being generated by the hardware device1,  a bitmask
(again of 0s and 1s) then being applied to the bitstream using the XOR (exclusive or) operation, and
finally a sample of the resulting bits being taken and added together to produce a random variable.
In the XOR operation, at positions in the stream where the value of the mask is 0 the random bit is
left unchanged, but at positions where the value of the mask is 1 the random bit is inverted. Ideally
the bits generated by the hardware should be unbiased between 0s and 1s and the values of different
bits should be statistically independent of one another. The mask is intended to mitigate the effects
of any departure from this ideal behaviour in the hardware-generated bitstreams. In particular, if the
part of the mask corresponding to the sample contains equal numbers of 0s and 1s, either for each
individual sample or on average over all the samples, then its application will eliminate any overall
bias between 0s and 1s.

In the GCP, the sample size for both the devices is 200 bits. But there are significant differences
between the operation of the two devices:
(1) In the Mindsong device, the hardware produces a single random bitstream and then an internal
560-bit mask is applied to it. The mask consists of all 70 of the possible 8-bit sequences that contain
equal numbers of 0s and 1s. Evidently the mask is intended not only to eliminate the effects of
overall bias between 0s and 1s, but also to reduce the effects of autocorrelation between different
bits within the stream.
(2) In the Orion device, the hardware generates two separate random bitstreams and then combines
them using the XOR operation. In the Global Consciousness Project, a mask consisting simply of
alternating 0s and 1s is then applied to the output of the device.

While it was found that the variance of the random variables produced by the Orion devices was
generally  close  to  the  ideal  value,  for  the  Mindsong  devices  the  variance  was  nearly  always
significantly larger than the ideal value, in many cases by as much as 0.1% (see Bancel, 2016,
Figure 1). For an event lasting several hours, with several dozen random number generators being

1 Details of the hardware operation, which in both cases relies on the quantum tunnelling phenomenon, can be found
on the GCP website (Nelson, 1999-2020).

https://www.psidata.org/notes/GCPVariance_2023-02-28.pdf
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sampled once a second, hundreds of thousands of values are involved, and even relatively small
departures from ideality may have a large cumulative effect. For this reason, it was found necessary
to normalise the data by using the measured variance for each device. 
 
The  purpose  of  this  note  is  to  try  to  understand  how  this  non-ideal  behaviour  may  arise  -
particularly for the Mindsong device - by examining the relationship between the variance and the
statistical properties of the bitstreams from which the random variables are produced.

2. General result

First, a general result for the variance is derived, by considering a sequence X n of  N random
binary  variables  (for n=1 to  N),  to  which  a  binary  mask  is  applied.  For  computational
convenience, it will be assumed that the variables take the values 1 and -1. The N corresponding
elements of the mask, which will be denoted by I n , can also be represented by values 1 and -1, so
that the application of the mask is equivalent to multiplying X n by I n , for each value of n. (If
the I n represents a mask composed of bits, this means that I n= 1 represents a 0 and I n=−1
represents a 1.)

The sum of the N random variables, after the application of the mask, is

Y = ∑
n=1

N

I n X n (1)

At this stage, the only assumption that needs to be made is that the statistical properties of the X n

do not vary with time. This implies that the mean of X n is independent of n, and the covariance of
X n and X n+m depends only on the difference  m.  Therefore,  denoting the expectation by an

overbar, the mean and covariance can be written as:

μ = X n (2)

γm = (X n−μ)(X n+m−μ) for m≥1 (3)

Note  that  because X n takes  only the  values  1 and -1,  the  mean square  of X n is  1,  so that

γ0 = 1 −μ
2 .

In addition to averaging over different values of the random variables X n , it is also necessary to
average over different positions of the mask relative to the  N elements of the sequence that are
sampled.  Performing  these  two averages  in  sequence  and denoting  the  second by 〈... 〉 ,  it  is
straightforward to show that the mean and mean square of Y are given by

〈Y 〉 = μ∑
n=1

N

〈 I n〉 (4)

〈Y 2〉 = N + 2∑
m=1

N−1

γm ∑
n=1

N−m

〈 I n I n+m〉 + μ
2 [J (N )− N ] (5)

in which



J (N ) = 〈(∑n=1

N

I n)
2

〉 (6)

Note  that  this  general  result  requires  no  assumption  about  the  statistical  distribution  of  mask
positions. The position of the mask relative to the elements of the sequence sampled is not assumed
to be uniformly distributed. It may be non-uniformly distributed, or may even take a single fixed
value.

In equation (5) for the mean square value of Y, the second term on the right-hand side represents the
effect of autocorrelation within the sequence X n , and the third represents the effect of bias. 

3. Application to the Mindsong random number generator

In order to use equations (4) and (5) to calculate the variance of Y when the Mindsong mask is used,
it is necessary to evaluate the terms containing the I n , and this requires an assumption to be made
about  the  statistical  distribution  of  the  position  of  the  mask  relative  to  the  N elements  of  the
sequence X n that are sampled. It is assumed that this position can be taken to be randomly and
uniformly distributed.2 This means that there is an equal probability that the first variable sampled,
X 1 , will correspond to each of the 560 elements of the mask.

Because the whole mask contains equal numbers of 0s and 1s, for each value of n, I n takes the
values 1 and -1 with equal probability, so 〈 I n 〉 = 0 , and therefore from equation (4) the mean
value  〈Y 〉 = 0 .  For  the  Mindsong  mask,  for m = 1 ,  the  average  over  mask  positions  in
equation (5) is found by direct calculation to be:

〈 I n I n+1〉 = − 1
7 (7)

It  remains  to  consider  the  influence  of  autocorrelation  and  bias  in  the  sequence X n ,  which
determine μ and  the γm in  equation  (5).  Although  it  has  been  assumed  that  the  statistical
properties of the sequence do not change with time, in general the distribution of each X n may
still depend on the values of all the other elements. But for illustration, a simple model will be
considered, in which the distribution of X n depends only on the value of the variable immediately
before it, X n−1 . It will also be assumed that the distribution differs by only a small amount from
the  ideal  distribution,  in  which X n has  mean  0  and variance  1.  With  these  assumptions,  the
dependence can be expressed as

Probability (X n= 1) = {
1
2 +(α+β)ϵ if X n−1 = 1
1
2 + (α−β)ϵ if X n−1 =−1

(8)

In these equations, the parameter ϵ reflects the overall size of the deviation from ideality, which is
assumed  to  be  small,  and  the  coefficients α and β determine  the  bias  and  autocorrelation
respectively in the bitstream. 

2 As discussed by Bancel (2016), the timing of the 200-bit sample is determined by the computer's clock, but the
application of  the  Mindsong device's  internal  mask  is  not.  Synchronisation between the  sample  and the  mask
position would require both these timings to agree to within about a third of a millisecond. In contrast, for most of
the computers in the network, the clocks were found to be inaccurate by at least a second, and in most tests this
inaccuracy drifted by at least a second in one hour.



Recalling  the  assumption  that μ ,  the  mean  value  of  X n ,  is  independent  of  n,  it  is
straightforward to show from equation (8) that consistency requires

μ =
2αϵ

1 − 2βϵ
(9)

Also, defining pm to be the probability that the value of X n+m is equal to that of X n , it is
found that

p1 =
1
2 + βϵ + αμϵ (10)

pm+1 = p1 pm+(1− p1) (1−pm) (11)

Equations (9-11) are exact,  but considering the limit  in which ϵ ,  the deviation from ideality,
becomes small, the quantities that appear in equation (5) are obtained approximately as

μ = 2αϵ +O (ϵ
2
) (12)

γ1 = 2βϵ− μ
2
+O(ϵ

2
) (13)

γm = −μ
2
+O(ϵ

2
) when m > 1 (14)

where in each equation the notation means that the final error term is asymptotically proportional to
ϵ

2 when ϵ is small.

Finally, recalling that 〈Y 〉 = 0 , equation (5) gives the variance of Y. This can be expressed as a
fraction of its ideal value, Var (Y 0)= N . This eliminates the effect of the rescaling of X n used
above, so that the following results are directly applicable to the bit-based variables used in the
GCP.

Two cases must be considered. First, when β ≠ 0 and autocorrelation is present, the leading-order
effect on the variance comes from the γ1 term of the sum and is proportional to ϵ , while the

contributions  from the  other  γm and  from μ
2 are  smaller,  and  proportional  to ϵ

2 .  Using
equation (7), this gives

Var (Y )

Var (Y 0)
= 1 − 4

7 (1−N
−1

)β ϵ + O(ϵ
2
) (15)

In the second case, when β = 0 , autocorrelation is absent. This means all the γm are zero, and

the effect on the variance comes entirely from the final term in equation (5), proportional to μ
2 .

This gives

Var (Y )

Var (Y 0)
= 1 − 4 [1−N −1 J (N ) ]α2

ϵ
2
+O (ϵ

3
) (16)

in which the value of J (N ) for the value of N used in the GCP is

J (200) =
22
7 (17)



For the Mindsong device, in this model and for the sample size used, when autocorrelation is absent
the variance is always lower than the ideal value. When autocorrelation is present, the variance may
be either higher or lower than the ideal value, but it will be higher if each of the X n is negatively
correlated with its immediate predecessor (so that β < 0 ).

4. Application to the Orion random number generator

The  Orion  random number  generator,  as  used  in  the  GCP,  differs  from the  Mindsong  in  two
respects.  Firstly,  two  random  bitstreams  are  combined  using  XOR  before  a  mask  is  applied.
Secondly, in contrast to the elaborate mask incorporated in the Mindsong device, the mask applied
here consists simply of 0s alternating with 1s.

Because  of  the  simple  alternating  nature  of  the  mask,  it  is  not  necessary  to  make  the  same
assumption as for the Mindsong device - namely that the mask position can be taken to be randomly
and uniformly distributed relative to the N elements sampled. It is sufficient just to assume that N is
an even number.3 With this assumption, it follows that

I n I n+1 =−1 ∑
n=1

N

I n = 0 (18)

Using the same formalism as above, based on random variables X n taking the values 1 and -1, the
combination  of  the  two  bitstreams  by  XOR  is  equivalent  to  simply  multiplying  together  the
variables representing the two sequences, and then reversing the sign of the product. If the same
simple model as above is used for each of the sequences, this gives straightforwardly

μ = −4α1 α2ϵ
2
+ O(ϵ

3
) (19)

γ1 = 4β1β2 ϵ
2
+O(ϵ

3
) (20)

γm = O(ϵ
4
) when m > 1 (21)

in  which  the  subscripts  of  the α and β coefficients  indicate  the  two  bitstreams  that  are
combined.

As before,  equations (4) and (18) show that 〈Y 〉 = 0 , and the variance of  Y can be obtained
directly from equation (5). Again, the result depends on whether autocorrelation is present in the
sequences of random variables. If it is present in both sequences, then β1β2 ≠ 0 and the leading-
order effect comes from the γ1 term of the sum, with other contributions asymptotically smaller:

Var (Y )

Var (Y 0)
= 1 − 8(1−N−1

)β1β2 ϵ
2

+ O(ϵ
3
) (22)

In contrast,  if autocorrelation is absent from both sequences, then all the γm are zero and the
variance is found to be

3 This  property of  the  mask  is  important  because,  while  in  the  Mindsong device  the  mask  is  internal  and  not
synchronised with the computer's clock, for Orion in the GCP the mask is applied by the computer to the output of
the device. Therefore the position of the mask relative to the sample cannot be taken to have a uniform random
distribution. In this situation, in order to avoid bias it is necessary not just that the mask as a whole is balanced
between 0s and 1s, but that the part of the mask corresponding to the sample is balanced.



Var (Y )

Var (Y 0)
= 1 − 16α1

2
α2

2
ϵ

4
+ O(ϵ

5
) (23)

For the Orion device as used in the GCP, in this model when autocorrelation is absent the variance
is  always  lower  than  its  ideal  value  (in  the  same  way  as  for  the  Mindsong  device).  When
autocorrelation is  present  in both the bitstreams that  are  combined,  the variance may be either
higher  or  lower  than  its  ideal  value,  but  it  will  be  higher  if  the  combined  effect  of  the  two
autocorrelations is such that each of the X n , obtained by combining the bitstreams, is negatively
correlated with its immediate predecessor (again in the same way as for the Mindsong device).

The difference from the variance produced by the Mindsong device is that here it is much smaller -
of order ϵ

2 instead of ϵ in the presence of autocorrelation, and of order ϵ
4 instead of ϵ

2 in
its absence. This is the result of combining two separate hardware-produced bitstreams.

5. Conclusions

The results for the variance of the random variables produced by the two devices are equations (15-
17), (22) and (23), based on the simplified model equation (8) of the statistical properties of the
bitstreams. In these equations, N is the number of bits sampled, ϵ reflects the overall size of the
deviations of the bitstreams from ideality (assumed to be small), and the coefficients α and β
determine the bias and autocorrelation of the individual bitstreams respectively.

In qualitative terms, the behaviour is similar for both devices. Bias of the bitstreams alone, in the
absence of autocorrelation, will always produce a decrease in the variance below its ideal value. But
if autocorrelation is also present, there may be either an increase or a decrease in the variance,
depending on the direction of the autocorrelation. For both devices, the variance will be increased if
the direction of the autocorrelation is such as to produce a negative correlation between successive
bits.

But quantitatively, the difference between the devices is that the changes in the variance from its
ideal value,  whether positive or negative,  are much larger for the Mindsong than for the Orion
device. In terms of the small parameter ϵ , in the leading-order approximation for Mindsong they
are proportional to ϵ in the presence of autocorrelation and ϵ

2 in its absence, but for Orion they
are proportional to only ϵ

2 in the presence of autocorrelation and ϵ
4 in its absence.

These scalings are consistent with the plot in Figure 1 of Bancel (2016), which shows that nearly all
the measured Mindsong variances are significantly larger than the ideal value, but that the measured
Orion  variances  are  clustered  tightly  around  the  ideal  value,  with  very  few  differing  from it
significantly. In terms of equation (15), the values shown in the plot would reflect a value of βϵ

for the Mindsong devices of roughly −10−3 .

Although the Mindsong mask was evidently intended to cancel the effects of autocorrelation by
combining all  the possible  balanced 8-bit  sequences,  it  does not succeed in cancelling even its
leading-order contribution, because the resulting value of 〈 I n I n+1〉 is non-zero. The same is true
of the mask used for the Orion devices (and in fact this simple alternating mask maximises the
absolute  value  of 〈 I n I n+1〉 ).  But  despite  this,  the  Orion  devices  produce  a  much  closer
approximation to ideal behaviour because two independent bitstreams are combined, which in effect
multiplies the small errors together. If an even closer approach to ideality were required, it could be
achieved by combining three or more independent bitstreams rather than two.



Although the equations presented here are based on a particular simple model of autocorrelation and
bias, the main conclusion - that a closer approach to ideality can be obtained by combining two or
more independent bitstreams - is expected to be valid more generally.
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